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Abstract This paper introduces methods for the detection of anisotropies which are
caused by compression of regular 3D point patterns. Isotropy tests based on direc-
tional summary statistics and estimators for the compression factor are developed.
Using simulated data, the dependence of the power of these methods on the intensity,
the degree of regularity, and the compression strength is studied. Finally, our methods
are applied to the point patterns of centers of air pores extracted from tomographic
images of ice cores. This way the presence of anisotropies in the ice caused by the
compression of the ice sheet and an increase of their strength with increasing depth
are shown.
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1 Introduction

Polar ice is a remarkable multi-proxy archive for climate information of the past.
With the perspective of highly resolved time series over hundreds of thousand years,
it has attracted considerable interest of climate researchers. During the last decades, a
couple of deep polar ice cores were drilled through the Antarctic and Greenlandic ice
sheets. Several proxy parameters are identified in the ice, e.g., temperature, precipi-
tation, dust, aerosol, sea ice extent, biological activity, and atmospheric composition
including the famous records of trace and greenhouse gases (Bender et al. 1994;
EPICA community members 2004; EPICA community members 2006). Accurate
chronologies are an important requirement for the interpretation of ice core records.
However, they are not satisfyingly developed until now. No absolute dating tool is
available for polar ice. The recent dating relies on models. Their key element is the
simulation of the individual history of ice deformation for each specific core site. In
this paper we present the first direct method for the estimation of the deformation
history (expressed by the thinning function as explained below) in polar ice using the
measured anisotropy of air inclusions in centimeter-sized ice samples from a deep ice
core.

An idealized ice sheet consists of a vertical sequence of compressed snow layers
that have been buried under the load of newly fallen snow. Because ice under pressure
is subject to creep, there is a vertical compression accompanied by a total lateral
transport of ice from the interior of an ice sheet to its boundaries. At the boundaries
the ice is exported to the ocean via iceberg calving and melting. Due to the interaction
of compression and lateral transport, the pore structures at different compression rates
do not differ significantly at first sight. In particular, counterintuitively the number of
pores per volume does not increase considerably owing to the incompressibility of the
ice. Furthermore, even ice samples taken from the same depth show a high variability
in their pore structure by reason of seasonal variations and the small sample size. CT
imaging can only handle centimeter-sized samples, while the compression rates vary
on scales of 10 meters. The key question is therefore, whether the compression rate
can be deduced from the pore structure.

The age of an ice layer is defined as the time when the water molecules of such
a layer have been accumulated on the surface of the ice sheet as snow. At undis-
turbed sites the age is continuously increasing with depth with the oldest ice at the
bottom. The oldest ice drilled so far is dated back to about 100 000 years in Green-
land (Summit station, 72◦34′ N, 37◦37′ W, GRIP ice core) and to about 800 000
years in Antarctica (Dome Concordia station, 75◦06′ S, 123◦20′ E, EPICA-EDC ice
core). Flow models that are used for dating describe the thinning of annual layers
with depth based on a mechanical model and on assumptions about bedrock condi-
tions and surface elevation changes in the past (Paterson 1994; Parrenin et al. 2007;
Ruth et al. 2007; Severi et al. 2007). Then the derived thinning function is com-
bined with a snow accumulation model for the past to estimate the age of the ice as a
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function of depth. Diverse input parameters of such models are not well constrained
including the mechanical properties of polycrystalline ice with different chemical
load and crystal orientation (a topic of growing interest which is not fully under-
stood, Duval 2000) with consequences for the formulation of the constitutive law
in the mechanical model. Due to the complex interaction between bedrock and ice,
it will also be difficult to formulate a physical model for the flow conditions at the
bedrock boundary. Parrenin et al. (2007) tried to avoid these problems in the model
parametrizations by the application of an inverse method using some fixed absolute
age markers in the core.

In this paper we show that the total thinning in polar ice could be directly re-
trieved from measured air inclusions in combination with a statistical method analyz-
ing pressed point processes. We have chosen unmarked summary statistics because
the anisotropy cannot be seen in the shape of the pores, which are more or less spher-
ical on the deeper layers. The definition of the summary statistics is similar to some
statistics which have been used in two-dimensional applications. However, in order
to apply these statistics in a three-dimensional setting, a variety of technical problems
have to be overcome. We believe that this is the first application of the summary sta-
tistics K and G, well known from spatial statistics, to anisotropic 3D data. In our first
attempt the application is restricted to samples from an ice core drilled at a Dome po-
sition where the acting forces are known. In the case of a Dome one can assume that
ice deforms simply in uniaxial compression. Ice layers are compressed by a factor
of c in the vertical and stretched in the lateral direction by a factor of 1/

√
c keeping

the total volume constant. The factor c gives the total thinning of an ice layer. The
bubble-like air inclusions inside the ice matrix are used as strain markers. They are
relicts of a long-term sintering process in the firn column. The term firn refers to the
upper 50 to 100 m of an ice sheet and describes sintered ice grains with connected air-
filled pores in between. The ice grains form an ensemble of tetrakaidecahedrons with
the air located at their edges. At the firn–ice transition the interconnected pore space
starts to isolate in individual bubbles. Firn becomes ice per definition. During the
sintering and compaction, the pore volume is continuously decreasing from 50% to
about 10% of the total volume at the firn–ice transition. The close-off process results
in a quite regular and uniform distribution of bubbles within the ice. Their regularity
originates from the initial homogeneity of surface snow and the moderate sintering
conditions, particularly the long sintering time with only slowly increasing pressure
load. The mean distance between adjacent bubbles is of the order of the grain size
and this is about 1 mm at the firn–ice transition. Below the firn–ice transition the
bubble distributions are only affected by the overall deformation process of the ice
itself. Bubble migration due to further grain growth or small temperature gradients
is negligible. The increasing pressure with depth leads to bubble shrinkage but again
without affecting the distribution of the bubble centers. At pressure loads below about
600 to 700 m depth the bubbles become unstable, and the enclosed air is captured as
clathrates in the ice. There is a natural depth limit for the existence of bubbles in polar
ice and therefore for the application of our method to deep polar ice cores.

The paper is organized as follows. First, we introduce some directional summary
statistics in 3D, which are then used as the basis for some isotropy tests. The tests
are constructed in order to reveal the particular type of anisotropy caused by simul-
taneous compression and lateral transport. In Sect. 4 we perform a simulation study
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comparing the powers of the tests based on different summary statistics. The estima-
tion of the pressing factor is discussed in Sect. 5. Both studies are performed on a
more general level than needed for the analysis of the ice samples in order to explore
the range of applicability of the suggested methods. Finally, the methods are applied
to the air pore data. The anisotropy of air pores is studied, and the pressing factors
are estimated at different depths.

2 Directional summary statistics

There are several summary statistics which can be used to study the spatial distribu-
tion of a point pattern. The nearest-neighbor distance distribution function G is the
distribution function of the distance from a typical point of the process to its nearest
neighbor. The empty space function F is the distribution of distance to the nearest
point of the process from a random point in space. The J function is a combination of
the G and F functions. Finally, Ripley’s K function is related to the expected number
of further points of the process within a certain distance from a typical point of the
point process, and the pair-correlation function g is essentially the derivative of the K

function w.r.t. the distance (for all these functions, see, e.g., Diggle 2003). Originally,
these functions have been defined in 2D but they can be defined exactly in the same
way for three-dimensional point processes. Usually, these statistics assume that the
point pattern is a realization of a stationary and isotropic point process.

Here, we are interested in detecting possible anisotropies which requires direc-
tional counterparts of these functions. So far, this problem has only been studied in the
2D case. Stoyan and Beneš (1991) discuss different types of anisotropies in marked
point patterns, namely anisotropies of marks (orientation of marks) and anisotropic
distribution of points. They define the point-pair rose density, which describes the
anisotropy of the arrangement of points, possibly including information on the marks.
The idea is as follows. Choose a pair of points with distance in a certain interval
(r1, r2) at random and determine the angle β between the line going through the
points and the 0-direction. This angle is a random variable taking values between
0 and π , whose distribution gives information on the arrangement of the points.
The point-pair rose density or1r2(β) is the corresponding probability density function
(weighted by the marks). It is an integrated version of the anisotropic pair-correlation
function, which is defined as follows (Stoyan 1991). The second-order product den-
sity �(x1, x2) is related to the probability of finding points of the process in small
neighborhoods of both x1 and x2. In the stationary but anisotropic case, � is a func-
tion of the distance r and the angle ϕ between the line going through x1 and x2 and
the 0-direction. The anisotropic pair correlation function is then g(r,ϕ) = �(r,ϕ)/λ2,
where λ is the intensity of the point process. Both for the point-pair rose density and
the anisotropic pair-correlation function, an edge-corrected kernel estimator should
be used. Furthermore, Stoyan et al. (1995, p. 127) define a directional version of
Ripley’s K function.

The definitions of these functions carry over to the 3D case without any difficulties.
However, the practical evaluation and the visualization of the results becomes more
challenging. Already in 2D, directional summary statistics depend on two variables,
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the distance and the angle. Nevertheless, it is obvious how to divide a disc into sectors
of equal size such that the summary statistics can be estimated for a discrete set of
parameters. Circular diagrams or plots over the interval [0,2π] can then be used to
display the results.

In 3D, three variables, the distance and two angles, have to be used. The esti-
mation of the directional summary statistics with respect to different directions re-
quires a suitable partition of the ball. The sectors should be of equal size and shape,
which means that the directions should be distributed as uniformly as possible. Other
choices might hold the danger of introducing some structure in the results which is
caused by the partitioning of the ball rather than by the data. In general, it is not clear
how to choose such a partition in a way that it is easily parametrized, e.g., by means
of spherical coordinates.

Here, we are dealing with a special type of anisotropy, namely anisotropy in z-
direction caused by compression of the point process. In this case, the behavior of the
point process in z-direction has to be compared to other reference directions, e.g., the
x- and y-direction. For this purpose, the process has to be studied within suitable sets
aligned along these directions. A complete partitioning of the ball is not necessarily
required.

One type of ball segments which are described easily in spherical coordinates, and
therefore suitable for our application, are spherical cones. Let Cu(r, θ) with r ≥ 0 and
0 ≤ θ ≤ π denote the double spherical cone defined as

Cu(r, θ) =
⎧
⎨

⎩
Ru

⎛

⎝
s sinϑ cosϕ

s sinϑ sinϕ

s cosϑ

⎞

⎠: s ∈ [0, r], ϑ ∈ [0, θ ] ∩ [π − θ,π], ϕ ∈ [0,2π]
⎫
⎬

⎭
,

where u is a unit vector, and Ru is a rotation mapping the z-axis on the line spanned
by u. In order to detect anisotropies, the point pattern is observed within three dou-
ble cones aligned along the coordinate axes and centered in the typical point of the
process. A compressed point process will have a different appearance within the z-
cone than within the x- and y-cones.

In the following we define the directional summary statistics which will be used
to detect the anisotropies. Already Stoyan et al. (1995, p. 153) discuss how to use
the directional K function and its zero-contours to estimate the pressing factor of
pressed point patterns. Therefore, the directional K function is the first function to be
considered here. The density functions mentioned above, namely the point-pair rose
density and the anisotropic pair-correlation function, are good when investigating and
describing anisotropies in a particular point pattern. However, these functions are
usually estimated by using kernel estimators. In addition to the technical problems in
3D, an analysis based on these functions would therefore pose further questions such
as the choice of a suitable bandwidth. For testing and estimation purposes it might be
a better idea to use cumulative functions like the directional K function. Smaller local
fluctuations in the cumulative functions should make the comparison of the results
for different directions more stable. In addition to the directional K function, we
will therefore consider two directional counterparts of the nearest-neighbor distance
distribution function G.
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2.1 Directional K function Kdir

We consider a directional version of Ripley’s K-function, namely the second reduced
moment measure of the cone Cu(r, θ), which is denoted by Kdir,u,θ (r). This means
that Kdir,u,θ (r) is the expected number of points within the double cone centered in
a typical point of the point process Ψ . An unbiased estimator of λ2Kdir,u(r) is given
by

λ2K̂dir,u,θ (r) =
∑

x∈Ψ

∑

y∈Ψ,y 	=x

1Cu(r,θ)(x − y)

|Wx ∩ Wy | , r ≥ 0, (1)

where Wx is the translation of the window W by the vector x, and |B| denotes the
volume of a set B ⊂ R

3 (Stoyan et al. 1995, p. 134 f).

2.2 Directional G functions

Pressing a hard core point pattern will transform the empty ball centered in each
point of the process into an ellipsoid. Therefore, this particular kind of anisotropy
will influence the distribution of the distance to the nearest neighbor. The nearest
neighbor in z-direction will be closer than the nearest neighbor in x- or y-direction.
Depending on whether the nearest neighbor is determined locally or globally, this
gives rise to the following summary statistics:

2.2.1 Local G function Gloc

Here, the nearest neighbor is defined locally, i.e., we are looking for the nearest neigh-
bor contained in the cone x + Cu(r, θ) centered in a point x ∈ Ψ . Denote by Gloc,u,θ

the distribution function of the distance from the typical point of the process to the
closest point in the cone. In order to define an estimator for Gloc,u,θ , let Ψ ′ denote
the point process of points x ∈ Ψ marked with the distance d to the closest point in
x + Cu(r, θ) and consider the distribution of the distance d . We use the Hanisch-type
estimator for Gloc,u,θ given by

Ĝloc,u,θ (r) = ĜH,loc,u,θ (r)

λ̂H

(2)

with

ĜH,loc,u,θ (r) =
∑

(x,d)∈Ψ ′

1[0,r](d)1W�Cu(d,θ)(x)

|W � Cu(d, θ)| , r ≥ 0,

and

λ̂H =
∑

(x,d)∈Ψ ′

1W�Cu(d,θ)(x)

|W � Cu(d, θ)| .

The term W � Cu(d, θ) denotes the erosion of the window W by the cone Cu(d, θ)

and is included for edge correction. We consider only those points x ∈ Ψ with the
property that the complete cone x + Cu(d, θ) is contained in the observation win-
dow W . As in Hanisch (1984), it can be shown that ĜH,loc,u,θ is an unbiased estima-
tor for λGloc,u,θ .
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2.2.2 Global G function Gglob

In this case we determine the global nearest neighbor y ∈ Ψ for each point x ∈ Ψ

and denote the marked point process of pairs (x, y) by Ψ ′. Then, Gglob,u,θ is defined
as the distribution function of the distance between x and y conditioned on y ∈ x +
Cu(r, θ). An estimator for Gglob,u,θ (r, θ) is then given by

Ĝglob,u,θ (r) =
∑

(x,y)∈Ψ ′ 1Cu(r,θ)(x − y)1W�b(0,‖x−y‖)(x)
∑

(x,y)∈Ψ ′ 1Cu(∞,θ)(x − y)1W�b(0,‖x−y‖)(x)
, r ≥ 0. (3)

Here, we consider only the points x ∈ Ψ with the property that the ball b(x,‖x − y‖)
is completely contained in W .

Compared to Gloc, the global G function depends on a smaller number of points
of Ψ . Therefore, Gloc should yield better results for small intensities, while, being
related to the nearest-neighbor orientation density, Gglob might be a good alternative
in the case of high-intensity patterns. A drawback of the G functions might be their
“short-sightedness” caused by the consideration of only nearest neighbors (Illian et
al. 2008, p. 214). Even though the phenomena we are studying are rather local, the
use of second-order methods such as Kdir might be expected to yield better results.

3 Isotropy tests

In the following, we introduce some tests which seem suitable to detect anisotropies
caused by pressing of isotropic hard core point processes. Monte Carlo tests are very
common tests in spatial statistics (Stoyan and Stoyan 1994). This technique, however,
requires an appropriate model for the data under investigation. Deviations between
the model and the data might then result in a loss of power of the related tests. Since
we are working with replicated data, we will therefore concentrate on nonparametric
methods which are only based on estimations from the data and do not require further
simulations.

3.1 Tests using summary statistics

Let Ŝx , Ŝy , and Ŝz be estimators of one of the summary statistics introduced above
with respect to the x-, y-, and z-direction. In the isotropic case, all three estimates
will look similar. For the pressed pattern, only Ŝx and Ŝy should be similar but show
a clear deviation from Ŝz.

Consider n point patterns ψ1, . . . ,ψn which can be assumed to have the same
distribution and should be tested for isotropy. If the number of samples n is large, a
test can be based on a comparison of the test statistics

Txy,i =
∫ r2

r1

∣
∣Ŝx,i (r) − Ŝy,i (r)

∣
∣dr, i = 1, . . . , n,

and

Tz,i = min

(∫ r2

r1

∣
∣Ŝx,i (r) − Ŝz,i (r)

∣
∣dr,

∫ r2

r1

∣
∣Ŝy,i (r) − Ŝz,i (r)

∣
∣dr

)

, i = 1, . . . , n,
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where [r1, r2] is a given interval. Tz is defined using the minimum to make sure that
the z-direction differs from both the x- and the y-direction. Other choices such as
the mean or the maximum could be considered as well. The isotropy hypothesis for a
certain sample ψi is rejected at significance level α if the corresponding value Tz,i is
larger than 100(1 − α)% of the estimated Txy values.

If only a few samples are available, a Monte Carlo test using the test statistic

T∑ =
∫ r2

r1

(∣
∣Ŝx(r) − Ŝy(r)

∣
∣ + ∣

∣Ŝy(r) − Ŝz(r)
∣
∣ + ∣

∣Ŝz(r) − Ŝx(r)
∣
∣
)
dr

can be considered alternatively. This test, however, requires the existence and the
simulation of an appropriate model for the data. Under an isotropic model, in theory
all three functions Sx , Sy, and Sz are equal, hence T∑ = 0.

The alternative statistics

T ′
xy = max

r1≤r≤r2

∣
∣Ŝx(r) − Ŝy(r)

∣
∣,

T ′
z = min

(
max

r1≤r≤r2

∣
∣Ŝx(r) − Ŝz(r)

∣
∣, max

r1≤r≤r2

∣
∣Ŝy(r) − Ŝz(r)

∣
∣
)
,

and

T ′∑ = max
r1≤r≤r2

(∣
∣Ŝx(r) − Ŝy(r)

∣
∣ + ∣

∣Ŝy(r) − Ŝz(r)
∣
∣ + ∣

∣Ŝz(r) − Ŝx(r)
∣
∣
)

were also considered in first trials but performed worse than the integral statistics
above due to large local differences between the functions Ŝx , Ŝy , and Ŝz.

3.2 Direction to the nearest neighbor

The compression of a hard core point process will result in a pattern where the points
are closer in z-direction than they are in x- or y-direction. Therefore, the direction
to the nearest neighbor after pressing will have a preferred direction along the z-
axis. As an alternative to the tests using directional summary statistics, we test this
directional distribution for uniformity against the alternative of a preferred direction
using the test described in Anderson and Stephens (1972). This provides us with
another model-free method, whose advantage is its simplicity. It only requires the
computation of the directions to the nearest neighbors, a further choice of parameters
such as the interval [r1, r2] or the size of the cone is not necessary. However, looking
only at directions, rather than directions and distances, this test might be less powerful
than tests based on both quantities.

The uniformity test works as follows. Suppose that a set of unit vectors vi =
(xi, yi, zi), i = 1, . . . , n, is given. Then compute the orientation matrix

A =
⎛

⎝

∑
x2
i

∑
xiyi

∑
xizi∑

xiyi

∑
y2
i

∑
yizi∑

xizi

∑
yizi

∑
z2
i

⎞

⎠ .
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Denote the eigenvalues of A by λ1 ≥ λ2 ≥ λ3 and the corresponding eigenvectors
by u1, u2, and u3. The value of λ1 is used as a test statistic for the uniformity test
against a bimodal alternative. If λ1 is too large, the uniformity hypothesis is rejected,
and u1 yields a maximum likelihood estimate of the modal vector. For n > 100, the
significance points for λ1 at a 5% significance level are given by 1

3 + 0.873√
n

.

4 Simulations

In the following, we will evaluate the powers of the anisotropy tests introduced above
applying them to simulated data. We believe that our methods could be applied to both
clustered and regular point patterns. Nevertheless we restrict ourselves to hard core
point processes since the air pore structures are regular. In order to cover a wide range
of such patterns, we are going to study two established models: a Matérn hard core
point process and a random packing of balls with a much higher degree of regularity.
The choice of the parameter values in the simulations (intensity, hard core radius)
is motivated by the values in the ice data. Isotropic realizations of both models are
scaled by the vector ( 1√

c
, 1√

c
, c) with 0 < c ≤ 1. This means that the patterns are

compressed in z-direction but stretched in x- and y-direction so that the volume of
the observation window is preserved. For the estimation of the summary statistics,
the value θ = π

4 was chosen, which yields reasonably large but still nonoverlapping
cones.

4.1 Matérn hard core point process

Realizations of Matérn hard core point processes with intensities λ = 500 and hard
core radius R = 0.025,0.05, and 0.075 as well as λ = 1000 and R = 0.025 and
0.05 were simulated. The isotropic realizations were generated within the cuboids
[0,

√
c] × [0,

√
c] × [0, 1

c
] with c = 0.7,0.8, and 0.9. The pressing of these realiza-

tions with the factor c then yielded point patterns within the unit cube. For each set
of parameters, we simulated 1000 realizations of the pressed point patterns. Each
of these realizations was tested for isotropy using the tests based on Gloc,Gglob,
and Kdir. In order to keep the extend of the paper limited, only the results for λ = 500
are presented here.

Good results of the estimation can only be expected if the envelopes of the direc-
tional summary statistics do not overlap too much on the chosen observation interval.
For the largest hard core values considered, this is the case on the interval [0,1.1R],
which was therefore chosen for the computation of the test statistics (see also Fig. 1).
In order to check the dependence of the test results on the choice of the interval, the
alternatives [0, 4R

3 ] and [0,0.1] ([0,0.1] and [0,0.2] for R = 0.075) were also con-
sidered. For λ = 500, the powers of these tests and the uniformity test for the direction
to the nearest neighbor based on the eigenvalue λ1 are given in Table 1. The powers
obtained for λ = 1000 show a similar behavior but tend to be higher than those for
λ = 500.

As expected, higher powers are achieved for higher intensities, larger hard core
radii, and stronger pressing. In all cases, the best results were obtained on the interval
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Fig. 1 Means (solid for xy, dashed for z) and envelopes (short dashed for xy, dotted for z) of the func-
tions Gloc, Gglob, and Kdir (from top to bottom) evaluated for 1000 realizations of a pressed Matérn hard
core point process (left) and a force biased packing (right) with parameters λ = 500 and R = 0.05. The
pressing factor is c = 0.8

[0,1.1R]. Comparing the powers for different summary statistics on this interval, we
see that Kdir usually yields the best results. Only for R = 0.025 and c = 0.9, i.e., for
the smallest hard core radius and the weakest pressing considered, it is one of the G

functions which performs slightly better. Also, both G functions, especially Gglob,
turn out to be more robust when changing the interval of observation. This can be
explained by the fact that both functions are distribution functions which stabilize
at a value of 1 for large values of r . The conjecture that tests based on summary
statistics are superior to the test based on the eigenvalues of the orientation matrix is
confirmed if the integration intervals for the summary statistics are chosen suitably.

The mean numbers of points contributing to the estimation of the G functions for
the point patterns of intensity 500 are shown in Table 2. As expected, the numbers
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Table 1 Powers in % of the isotropy tests on a 5% significance level for 1000 Matérn hard core point
patterns of intensity λ = 500 and hard core radius R pressed by the factor c. The test statistics were
computed on the interval [0, r2]

c | R 0.025 0.025 0.025 0.05 0.05 0.05 0.075 0.075 0.075

0.9 | r2 0.1 0.033 0.0275 0.1 0.067 0.055 0.2 0.1 0.0825

Gloc 1.4 6.6 26.6 3.7 23.2 77.9 18.0 65.7 98.9

Gglob 0.6 6.1 26.8 4.8 22.3 73.9 39.1 56.6 87.0

Kdir 1.0 7.0 26.7 4.5 26.7 82.6 7.9 78.0 99.7

λ1 8.0 11.4 45.1

0.8 | r2 0.1 0.033 0.0275 0.1 0.067 0.055 0.2 0.1 0.0825

Gloc 1.4 21.9 49.3 15.4 72.7 97.2 77.8 99.8 100

Gglob 1.0 21.2 48.0 21.3 68.2 96.6 93.9 98.6 100

Kdir 1.3 23.3 49.9 19.9 79.7 98.8 36.9 100 100

λ1 7.7 21.4 95.4

0.7 | r2 0.1 0.033 0.0275 0.1 0.067 0.055 0.2 0.1 0.0825

Gloc 1.9 37.9 56.3 41.4 95.0 99.3 98.3 100 100

Gglob 1.9 36.1 56.2 50.7 91.6 98.1 98.9 99.7 100

Kdir 1.6 37.9 57.7 44.6 98.1 99.6 75.7 100 100

λ1 7.6 39.3 99.9

are much smaller for Gglob than for Gloc. When increasing the pressing factor, a
decrease of the numbers for the x- and y-direction is observed, while the numbers for
the z-direction increase. This tendency is more pronounced for Gglob than for Gloc.
In extreme cases it might lead to instabilities in the estimation of Gglob and a failure
of the test.

4.2 Random packing of balls

To study also point patterns with a higher degree of regularity, we generated real-
izations of random packings of balls within the unit cube using the force-biased al-
gorithm (Bezrukov et al. 2001). This algorithm works with the concept of collective
rearrangement. It starts with a fixed number of balls which are randomly placed inside
a container. Overlaps are permitted in the initial configuration, but gradually reduced
by shifting the balls and reducing their sizes. Throughout, the initial size distribution
is preserved up to a scaling factor. Using this algorithm, dense packings of balls with
arbitrary radius distributions may be generated.

Here, we are working with balls of equal size. Their radii were chosen as 0.025 and
0.05, yielding hard core radii of R = 0.05 and R = 0.1, respectively. For the distribu-
tion of the number of balls, we chose a Poisson distribution with parameter λ = 500.
As in the Matérn case, 1000 realizations were considered, and the ball packings were
scaled by the vector ( 1√

c
, 1√

c
, c) with c = 0.7,0.8, and 0.9.
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Table 2 Mean number of points used for the estimation of Gloc and Gglob for the point processes of
intensity λ = 500 in the Matérn (M) and the force biased (FB) case

R c Gloc,x Gloc,y Gloc,z Gglob,x Gglob,y Gglob,z

M 0.025 0.9 290.14 289.76 290.68 93.26 92.50 94.16

M 0.025 0.8 289.96 289.55 290.94 92.84 92.09 94.86

M 0.025 0.7 289.82 289.37 291.21 92.38 91.75 95.55

M 0.05 0.9 283.91 283.56 286.12 85.83 85.52 93.96

M 0.05 0.8 283.10 282.74 287.85 83.18 83.00 99.11

M 0.05 0.7 282.04 281.71 289.27 80.42 80.41 103.83

M 0.075 0.9 271.13 271.01 277.39 71.44 71.89 97.02

M 0.075 0.8 269.20 269.17 281.92 63.93 64.49 112.36

M 0.075 0.7 267.48 267.60 286.46 57.92 58.53 124.95

FB 0.05 0.9 267.06 266.84 270.01 72.49 72.97 91.84

FB 0.05 0.8 264.00 264.00 269.93 65.46 65.13 106.26

FB 0.05 0.7 259.83 259.34 267.10 57.70 57.09 120.20

FB 0.1 0.9 241.02 240.70 251.77 32.05 31.85 131.57

FB 0.1 0.8 237.64 237.37 258.71 12.81 12.78 183.13

FB 0.1 0.7 234.22 233.89 262.03 9.34 9.55 197.79

The envelopes of the directional summary statistics obtained for R = 0.05 are
also shown in Fig. 1. Compared to the Matérn envelopes which are separated only
close to the hard core radius, the difference between the curves for xy and z for Kdir
and Gloc is more pronouned. For the larger hard core distance, the envelopes, which
are not shown here, are even clearly disjoint over the whole interval of observation.
Contrary, for Gglob they are closer together which is due to the small number of points
included in the statistics in this case (see Table 2). This suggests to work with Kdir or
Gloc and to choose larger intervals for the anisotropy tests when working with more
regular data.

The test results in Table 3 confirm this impression. The highest powers are ob-
tained for Kdir followed by Gloc if both are evaluated on the intermediate interval.
For R = 0.1, we observe powers of 100% for the anisotropy tests based on Gloc and
Kdir for suitably large intervals. In contrast, the test based on Gglob yields only poor
results.

4.3 Existence of outliers

The results presented so far indicate that the range of observation for the directional
summary statistics should be chosen depending on both the degree of regularity and
the hard core distance observed in a particular point pattern. A situation which is
likely to appear in real data is the existence of outliers, i.e., few points in the pattern
are permitted to violate the hard core condition.

In order to study the behavior of the directional summary statistics in such cases,
we insert outliers in some of the simulated point patterns and repeat the analyses
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Table 3 Powers in % of the isotropy tests using directional summary statistics on a 5% significance level
for 1000 force biased packings of intensity λ = 500 and ball radius R pressed by the factor c. The test
statistics were computed on the interval [0, r2]

c | R 0.05 0.05 0.05 0.1 0.1 0.1

0.9 | r2 0.2 0.15 0.1 0.2 0.15 0.1

Gloc 23.4 27.1 14.9 100 100 51.4

Gglob 1.6 1.6 2.0 1.1 1.1 35.5

Kdir 13.4 49.2 15.8 100 100 64.0

0.8 | r2 0.2 0.15 0.1 0.2 0.15 0.1

Gloc 85.2 87.0 63.8 100 100 97.3

Gglob 1.5 1.5 3.2 3.2 3.2 26.0

Kdir 88.5 98.8 75.7 100 100 98.3

0.7 | r2 0.2 0.15 0.1 0.2 0.15 0.1

Gloc 99.2 99.5 97.3 100 100 100

Gglob 2.7 2.8 4.9 33.7 33.7 63.8

Kdir 99.4 99.9 99.1 100 100 100

described above. For that purpose, five points x1, . . . , x5 are chosen randomly from
each point pattern. For each such point, an additional point yi is generated from a uni-
form distribution on a ball of radius R centered in xi . Then the directional summary
statistics are estimated for the point patterns including the points y1, . . . , y5. To keep
the amount of simulations limited, the analysis is restricted to patterns of intensity
λ = 500.

The envelopes obtained for the Matérn hard core processes and the force-biased
packings with R = 0.05 are shown in Fig. 2. In the Matérn case, the envelopes for
the (x, y)- and the z-direction are no longer separated. Even in the pure hard core
case this was only the case for values of r close to the hard core distance, exactly in
the area which is most affected by the existence of outliers. The curves for the force-
biased packings show similar changes for values close to R. Nevertheless, we might
still expect acceptable power of the tests, since the results in the previous section
suggested to use larger intervals in this case. The most striking changes are visible in
the envelopes for Gglob, which is strongly influenced by the existence of outliers.

The powers of the isotropy tests are given in Tables 4 and 5. From the observation
of the envelopes decreasing powers can be expected in the presence of outliers. Espe-
cially for Gglob, this indeed turns out to be the case. Besides this decrease, the results
for the larger hard core radius R = 0.075 look similar to the results in the pure hard
core case. On the interval [0,0.2] the G functions yield better results, while on both
other intervals and in the total, Kdir performs best. For the smaller hard core radius
R = 0.05, the situation is different. Now the best results for each of the functions are
obtained using the intermediate interval since the structure of the curves for r close
to the hard core radius R is mainly governed by the outliers. Again, the test based on
Kdir yields the best total value.
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Fig. 2 Means (solid for xy, dashed for z) and envelopes (short dashed for xy, dotted for z) of the func-
tions Gloc, Gglob, and Kdir (from top to bottom) evaluated for 1000 realizations of pressed Matérn hard
core point processes (left) and force-biased packings (right) of intensity λ = 500 with five outliers. The
hard core radius is R = 0.05, the pressing factor is c = 0.8

In the force-biased case the powers behave as expected, too. At least on the two
larger intervals we obtain similar values as in the nonoutlier case.

5 Estimation of the pressing factor

We have seen that the anisotropy tests work well if both the intensity of the point
pattern and the hard core radius are sufficiently large. Now we are going to investigate
whether the statistics can also be used for the estimation of the pressing parameter c.
For that purpose, we simulate 100 realizations of Matérn hard core point processes
and force-biased packings with parameters as in Sect. 4. Each realization is pressed
using the pressing factors c = 0.7,0.8,0.9, and 1.0. Then, every pattern is rescaled by
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Table 4 Powers in % of the isotropy tests using directional summary statistics on a 5% significance level
for 1000 Matérn hard core point patterns of intensity λ = 500 and hard core radius R including five outliers
and pressed by the factor c. The test statistics were computed on the interval [0, r2]

c | R 0.05 0.05 0.05 0.075 0.075 0.075

0.9 | r2 0.1 0.067 0.055 0.2 0.1 0.0825

Gloc 2.8 10.4 6.7 14.1 56.2 81.8

Gglob 3.9 6.4 2.4 23.1 29.5 25.4

Kdir 3.3 10.6 5.0 6.0 63.8 87.8

0.8 | r2 0.1 0.067 0.055 0.2 0.1 0.0825

Gloc 13.7 49.6 45.1 67.2 98.1 100

Gglob 13.7 30.6 17.2 75.3 84.3 79.3

Kdir 11.1 54.3 39.5 22.6 99.4 100

0.7 | r2 0.1 0.067 0.055 0.2 0.1 0.0825

Gloc 34.5 77.8 68.3 96.1 100 100

Gglob 29.8 57.1 35.0 93.3 95.3 90.2

Kdir 33.4 81.7 70.1 65.1 100 100

Table 5 Powers in % of the isotropy tests using directional summary statistics on a 5% significance level
for 1000 force-biased packings of intensity λ = 500 and hard core radius R including five outliers and
pressed by the factor c. The test statistics were computed on the interval [0, r2]

c | R 0.05 0.05 0.05 0.1 0.1 0.1

0.9 | r2 0.2 0.15 0.1 0.2 0.15 0.1

Gloc 23.9 26.1 9.2 100 100 0.5

Gglob 0.5 0.5 0.6 0.1 0.1 0.1

Kdir 11.0 44.2 9.6 100 100 0.6

0.8 | r2 0.2 0.15 0.1 0.2 0.15 0.1

Gloc 82.2 84.7 50.9 100 100 0.8

Gglob 0.0 0.0 0.0 0.1 0.1 0.1

Kdir 81.4 97.9 58.5 100 100 1.3

0.7 | r2 0.2 0.15 0.1 0.2 0.15 0.1

Gloc 98.9 99.0 93.4 100 100 64.8

Gglob 0.1 0.1 0.1 0.0 0.0 0.1

Kdir 98.5 99.0 97.6 100 100 96.7

the vector (
√

d,
√

d, 1
d
), where d takes values between 0.6 and 1.1 at steps of 0.025.

If the values of c and d are similar, both operations cancel out, and the resulting
pattern is close to the original, hence isotropic. For large differences between c and d ,
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however, the resulting pattern will show a certain degree of anisotropy which can be
detected by our methods.

For each of the rescaled patterns, we compute the statistic T∑
,d (the statistic T∑

for the pattern rescaled by the factor d) based on all three summary statistics intro-
duced above using two different choices of the integration interval: [0,1.1R] and
[0, 4R

3 ] in the Matérn case and [0,0.15] and [0,0.2] for the force-biased packings.
The statistic T∑ was chosen here rather than a statistic based on Tz or Txy , since it
allows for a simultaneous measurement of the deviation between all three directions.
Now ĉ = argmind T∑

,d , i.e., the value of d leading to the most isotropic patterns, is
considered as estimator for the pressing factor c.

The means of the estimated values and the mean squared error (MSE) of the es-
timation are displayed in Tables 6 and 7. Only the values for the interval yielding
the smaller MSE are shown. In most of the cases, this turned out to be the smaller
interval. In general, the trends observed in the testing part are confirmed in this study.
The MSE for the estimates is smaller for higher intensities and higher degrees of
regularity, and in most of the cases Kdir yields the best results. Only in some of the
Matérn examples the degree of compression does not influence the estimation results
as significantly as in the testing part. When interpreting the results one should keep
in mind that the MSE is also influenced by the choice of the d values considered.

6 Application to the ice data

We now apply our estimation methods to ice samples from an ice core which was
drilled during an ongoing deep drilling project at Talos Dome, Antarctica (159◦04′ E,
72◦46′ S). The achieved drilling depth after the season 2006/2007 is about 1600 m,
only slightly less than the predicted absolute ice thickness. The accumulation rate
is estimated to about 100 mm water equivalent per year in the Thalos Dome region
(Stenni et al. 2002).

Three different depths between the firn–ice transition and the transition of bubbly
to clathrate ice are chosen: 153 m, 353 m, and 505 m depth. For each depth, 14
samples are prepared to cover the structural variations on the centimeter scale as the
amount of bubbles per volume ice is fluctuating on the small scale. The fluctuations
correspond to variations in grain size at the firn–ice transition caused by seasonal
variations in surface snow properties and snow fall events.

The samples are imaged by X-ray microfocus computer tomography (µCT) using
a µCT-1072 (Skyscan, Belgium) inside a cold room at −15◦C. The sample size is
limited to cylinders of 15 mm diameter and 15 mm height. Therefore the ice is cut
into cubes of 2 cm side length and rasped on a rotating turn table to form regular
cylinders. The scanning volume is adjusted to the specific sample size by varying
the spatial resolution between 13 and 16 µm per pixel. For each sample, a digital
reconstruction algorithm generates a set of 900 images of 1024 × 1024 pixels.

In this paper, we restrict attention to the samples taken from 353 m and 505 m
depth. Due to the large difference in X-ray absorption between air and ice, the vol-
ume images are simply segmented by global thresholding to identify air bubbles in
the ice matrix (see Fig. 3). A subsequent labeling algorithm allows us to distinct the
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Table 6 Means of the estimated pressing factors ĉK , ĉGloc , and ĉGglob for the Matérn point patterns and
MSE of the estimation

λ R r2 c ¯̂cloc MSE ¯̂cglob MSE ¯̂cK MSE

1000 0.05 0.055 1.0 0.9988 5.813e−4 0.9995 7.625e−4 0.9993 4.063e−4

1000 0.05 0.055 0.9 0.8985 4.375e−4 0.8985 4.750e−4 0.8988 3.438e−4

1000 0.05 0.055 0.8 0.7988 3.438e−4 0.8018 5.313e−4 0.7990 4.125e−4

1000 0.05 0.055 0.7 0.6993 4.313e−4 0.6990 4.125e−4 0.6998 3.938e−4

1000 0.025 0.033 1.0 0.9480 1.513e−2 0.9513 1.596e−2 0.9590 1.154e−2

1000 0.025 0.033 0.9 0.8745 1.335e−2 0.8858 1.071e−2 0.8950 1.270e−2

1000 0.025 0.033 0.8 0.8248 1.141e−2 0.8250 1.360e−2 0.8285 1.290e−2

1000 0.025 0.0275 0.7 0.6865 7.325e−3 0.6820 7.038e−3 0.6923 6.769e−3

500 0.075 0.0825 1.0 1.0000 5.625e−4 1.0000 5.375e−4 0.9988 5.063e−4

500 0.075 0.0825 0.9 0.8955 5.250e−4 0.8968 7.438e−4 0.8973 4.563e−4

500 0.075 0.0825 0.8 0.7973 4.438e−4 0.7945 9.625e−4 0.7980 4.375e−4

500 0.075 0.0825 0.7 0.6978 5.063e−4 0.7003 5.813e−4 0.6963 4.813e−4

500 0.05 0.055 1.0 0.9828 3.944e−3 0.9795 6.763e−3 0.9875 4.850e−3

500 0.05 0.055 0.9 0.8810 5.813e−3 0.8855 5.138e−3 0.8933 3.631e−3

500 0.05 0.055 0.8 0.7780 5.363e−3 0.7818 4.544e−3 0.7923 2.844e−3

500 0.05 0.055 0.7 0.6880 1.850e−3 0.6913 1.981e−3 0.6860 1.988e−3

500 0.025 0.033 1.0 0.8270 6.264e−2 0.8285 6.020e−2 0.8335 5.733e−2

500 0.025 0.033 0.9 0.8158 3.473e−2 0.8210 3.291e−2 0.8200 3.335e−2

500 0.025 0.033 0.8 0.7678 2.299e−2 0.7860 2.364e−2 0.7708 2.037e−2

500 0.025 0.0275 0.7 0.6263 9.981e−3 0.6245 9.663e−3 0.6263 1.00e−2

single bubbles and to compute their centers. For the estimation of the summary statis-
tics, cuboidal observation windows are fitted into the cylinders, and all pore centers
contained in the cuboids are extracted. In order to find the maximal number of pores
for each sample, the observation windows are not required to have equal size. Only
objects with a volume larger than 25 voxels are included in the analysis yielding
point patterns containing between 329 and 733 points. All image processing steps are
performed on volume images using the MAVI software package (Fraunhofer ITWM
2005). Figure 4 shows visualizations of one sample from each depth.

In contrast to the simulated data, the pore intensities in different ice samples cannot
be assumed to be the same due to the variations on the centimeter scale. Therefore,
we use the ratio estimation method described in Baddeley et al. (1993) to pool the
summary statistics within the depths. This means that the mean curves are estimated
as

Ŝ =
∑14

i=1 Ui
∑14

i=1 Vi

.

For Kdir, Ui is the double sum in (1), and Vi is the estimated squared intensity evalu-
ated for sample i. For the G functions, Ui and Vi are the numerators and denomina-
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Table 7 Means of the estimated pressing factors ĉK , ĉGloc , and ĉGglob for force-biased packings with m

outliers and MSE of the estimation

λ R m r2 c ¯̂cloc MSE ¯̂cglob MSE ¯̂cK MSE

500 0.1 0 0.15 1.0 1.0005 2.000e−4 1.0130 4.200e−3 0.9983 1.063e−4

500 0.1 0 0.15 0.9 0.8998 1.438e−4 0.9290 5.763e−3 0.8985 7.500e−5

500 0.1 0 0.15 0.8 0.7995 1.000e−4 0.8378 7.806e−3 0.7990 6.250e−5

500 0.1 0 0.15 0.7 0.6998 4.375e−5 0.7358 8.419e−3 0.6995 1.250e−5

500 0.1 5 0.15 1.0 0.9988 1.938e−4 1.0103 3.806e−3 0.9980 1.125e−4

500 0.1 5 0.15 0.9 0.8988 1.563e−4 0.9320 6.150e−3 0.8990 6.250e−5

500 0.1 5 0.15 0.8 0.7990 1.250e−4 0.8470 1.095e−2 0.7993 3.125e−5

500 0.1 5 0.15 0.7 0.6993 4.375e−5 0.7660 1.805e−2 0.6995 2.500e−5

500 0.05 0 0.15 1.0 1.0005 2.625e−3 0.9385 2.081e−2 0.9955 1.813e−3

500 0.05 0 0.15 0.9 0.8953 2.806e−3 0.9060 1.819e−2 0.8993 1.669e−3

500 0.05 0 0.15 0.8 0.7968 2.306e−3 0.8655 2.511e−2 0.8030 1.013e−3

500 0.05 0 0.15 0.7 0.6958 1.631e−3 0.8128 3.222e−2 0.7015 7.125e−4

500 0.05 5 0.15 1.0 0.9920 3.163e−3 0.9195 2.649e−2 1.0018 1.819e−3

500 0.05 5 0.15 0.9 0.9023 3.294e−3 0.8705 2.038e−2 0.9025 1.775e−3

500 0.05 5 0.15 0.8 0.8033 2.594e−3 0.8745 3.070e−2 0.8043 1.444e−3

500 0.05 5 0.15 0.7 0.6995 2.088e−3 0.8188 3.722e−2 0.6990 1.013e−3

tors, respectively, in (2) and (3). Scatter plots of Ui against Vi , which are not shown
here, indicated that the assumption of a linear relation between these numbers is jus-
tified. The means and envelopes given by the minima and maxima of the observed
values of the directional summary statistics Gloc and Kdir for the ice samples are
shown in Fig. 5. Especially for Kdir, a clear deviation between the envelopes for the
(x, y)- and the z-directions is observed. Therefore, the hypothesis of isotropy can
clearly be rejected in this case.

For the estimation of the pressing factors, we have to choose a suitable interval of
integration. Therefore, we first investigate the degree of regularity of the pore system
by estimating the pair-correlation function of the point patterns of pore centers. Al-
though the point patterns we are dealing with are clearly anisotropic, we believe that
the isotropic pair-correlation function, which is easy to estimate, is sufficient for this
purpose. The results for five samples from each depth are shown in Fig. 6. The wave-
like appearance of the curves resembles the structure which is typically observed in
pair-correlation functions of dense packings of balls (Stoyan et al. 1995). This is an
evidence for a very regular structure of the data.

The histograms of the nearest-neighbor distances for three samples per depth are
shown in Fig. 7. The gaps on the left tail of the histograms indicate the existence of
outliers in the ice samples.

Combined with the results of our simulation studies, these observations suggest the
choice of an intermediate interval size for the estimation of the pressing factors and
the use of Gloc or Kdir rather than Gglob. The overlap of the envelopes shown in Fig. 5
is small over the whole interval [0,2.0]. Therefore, we decided to choose [0,2.0] for
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Fig. 3 2D sections of the original (left) and the binarized (right) image of an ice sample from depth 353 m

Fig. 4 Visualizations of the system of air pores in ice samples from depth 353 m (left) and 505 m (right)

the estimation of the pressing factors, which allows us to control the behavior of the
functions over the whole range. For the rescaling of the samples from depth 353 m,
we used values of d ranging between 0.5 and 1.0 at steps of 0.025. Since stronger
pressing is expected in deeper areas, the values for the samples from depth 505 m
were chosen between 0.3 and 0.8. The estimates ĉG and ĉK obtained using Gloc and
Kdir are given in Table 8. They confirm that the compression of the ice is stronger at
the depth 505 m than at 353 m depth.

In order to investigate the estimation variance in this case, we adopt a bootstrap
method as described in Illian et al. (2008, p. 454). For each of the two summary sta-
tistics and depths, 200 new samples of ĉ values are generated by random resampling
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Fig. 5 Means (solid) and envelopes (short dashed for x and y, dotted for z) of the functions Gloc (top)
and Kdir (bottom) evaluated for the ice samples from depth 353 m (left) and 505 m (right)

Fig. 6 Isotropic pair correlation functions estimated for five ice samples taken from depth 353 m (left)
and 505 m (right)

from the estimated values with replacement. The estimation variance is then approx-
imated by the sample variance of their means. For depth 353 m, we obtained values
of 3.045 · 10−4 (Gloc) and 1.667 · 10−4 (Kdir), the values for 505 m are 9.341 · 10−5

(Gloc) and 2.543 · 10−4 (Kdir). The corresponding 95% confidence intervals are dis-
joint for the two depths considered. They are

353 m: (0.607,0.679) using Gloc and (0.604,0.655) using Kdir, and

505 m: (0.518,0.577) using Gloc and (0.516,0.552) using Kdir.
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Fig. 7 Histograms of distances to the nearest neighbors for three samples from depth 353 m (top) and 505
m (bottom)

Table 8 Results for the ice samples: number of pores n, pores per volume NV , and the pressing factors
ĉG and ĉK estimated using Gloc and Kdir, respectively

353 m n NV ĉG ĉK 505 m n NV ĉG ĉK

1 411 0.3511 0.575 0.575 1 675 0.3559 0.500 0.575

2 431 0.3228 0.550 0.550 2 733 0.4414 0.550 0.500

3 398 0.2981 0.625 0.625 3 549 0.2937 0.500 0.700

4 478 0.3906 0.675 0.675 4 639 0.4310 0.550 0.525

5 411 0.4019 0.625 0.625 5 590 0.4398 0.500 0.625

6 439 0.3861 0.675 0.600 6 398 0.3063 0.500 0.500

7 372 0.3125 0.650 0.575 7 356 0.2682 0.550 0.525

8 334 0.2938 0.550 0.575 8 439 0.2761 0.575 0.500

9 369 0.3246 0.575 0.600 9 493 0.2969 0.600 0.525

10 329 0.3907 0.650 0.775 10 463 0.2870 0.500 0.475

11 550 0.3220 0.650 0.750 11 479 0.2885 0.500 0.550

12 485 0.2754 0.700 0.725 12 466 0.2931 0.575 0.575

13 649 0.3577 0.650 0.650 13 541 0.3357 0.575 0.575

14 711 0.3318 0.675 0.675 14 413 0.2715 0.500 0.475

Mean 454.79 0.3403 0.630 0.641 Mean 516.71 0.3241 0.534 0.545

In order to further evaluate the estimates, the mean curves of Gloc and Kdir for the
rescaled point patterns from depth 353 m are shown in Fig. 8. For both functions,
the difference between the (x, y)- and the z-directions turns out to be small in the
rescaled patterns. The same is true for the samples from depth 505 m.
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Fig. 8 Means of the functions Gloc and Kdir for the rescaled versions of the ice samples from depth 353
m using the estimated pressing factors ĉG and ĉK , respectively

7 Discussion

The main aim of the paper was to study anisotropy of air pores in polar ice. The hy-
pothesis is that the ice is compressed and therefore, the spatial pattern of the air pores
in z-direction differs from the pattern in x- or y-direction. To investigate this, we in-
troduced some directional summary statistics in 3D based on the nearest-neighbor
distance distribution function and Ripley’s K function. These summary statistics
were used to develop tests for isotropy against this specific type of anisotropy. An
adaptation of the methods for the detection of anisotropies with respect to other di-
rections is straightforward.

The tests presented here are based on replicates and have the advantage that there
is no need to assume and fit a model to the data. In a simulation study we evaluated
the powers of the tests for regular patterns of different intensities, degrees of regu-
larity, and strengths of compression. As expected, the best results (highest powers)
were obtained with high intensities, high degrees of regularity (e.g., large hard-core
radii) and strong pressing. For Matérn hard core point processes, the test based on the
directional K function performed best. The size of the interval of observation should
be chosen depending on the hard core distance. However, it turned out that tests based
on the G functions are more robust to changes of this interval. For point processes
with a high degree of regularity, such as packings of balls, the use of the K function
or the local G function on a larger interval is recommended. In this case, our methods
also proved robust to the existence of outliers. In the point process literature it is often
suggested to use more than one summary statistic for the analysis of a point pattern.
Despite the better test results for Kdir, it seems therefore advisable to work with both
Kdir and Gloc.

If only a few replicates are available, it is possible to perform a Monte Carlo test
based on the summary statistics presented here. In this case, it is necessary to find an
appropriate model for the data in order to be able to simulate patterns from it. The
results based on the Monte Carlo test are similar to the results based on the data-
based tests, when testing on simulated data. If the regularity in the data is not very
pronounced, one has to be careful when determining the hard core distance, since
it affects the choice of the interval on which the differences between the summary
statistics in different directions are investigated.
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In addition to the summary statistics we have considered here, the distribution of
the distances not only to the nearest neighbor but to all other points in the pattern
could be investigated. This function is closely related to the point-pair rose density.
The advantage of using all points is discussed in a paper by Fry (1979) on strain
measurement in rocks. For the estimation of this function, only distances up to a
maximal value should be considered. Depending on how large this value is chosen,
an edge correction similar to the ones for the G functions would result in estimates
based on either a small number of points with a lot of information or a large number
of points with little information. It is not clear in advance which alternative should be
preferred.

We performed a simulation study for regular patterns with hard core since the
air pore patterns are regular. However, it is also interesting to investigate how the
tests work for clustered patterns. In this case, the aim is a detection of a change of
the shapes of clusters caused by the pressing. We performed a simulation study also
for Matérn cluster processes even though the results are not reported here. As in the
hard core case, both high intensities and large pressing factors yield high powers of
the test. In contrast to the regular case, anisotropies within point patterns with small
cluster radii are easier to detect than within patterns with large cluster radii, since the
concentration of points within the clusters is higher. Also, it turns out that the tests
work better in the case of less points in a cluster. As in the regular case, the test based
on the K function works best followed by the local G function, while the global G

function yields only poor results.
For the analysis of the ice samples, not only the detection of anisotropies was

required but also the measurement of its strength. In order to study this, we introduced
a method to estimate the pressing factor. The observed pattern is “stretched” using
different pressing factors. The factor minimizing the difference between the spatial
structure in the three coordinate directions, hence yielding the most isotropic pattern,
is chosen as the estimate of the pressing factor. The evaluation of the estimation
procedure on simulated data produced satisfactory results. Especially for very regular
patterns, the method works very well even in the presence of outliers.

Applied to the ice data, our methods render the anisotropy in z-direction caused by
the compression of the ice sheet clearly visible. The means of the estimated pressing
factors of 0.63/0.64 for the samples from 353 m depth and 0.53/0.55 for the depth
of 505 m are consistent with the expected increase of the degree of compression with
increasing depth. For the samples from 153 m depth, we obtained mean pressing
factors of 0.81/0.82 which confirms this finding. However, the comparison of the
mean curves for the two depths shown in Fig. 9 indicate further structural differences
between samples from different depths. A detailed investigation of these questions
including samples from further depths is subject to future research.

A simple model of ice flow known as Nye formula in the glaciological litera-
ture (described in Paterson 1994) assumes a constant thinning rate with depth. The
Nye-approach is fairly simple and needs only the absolute ice thickness as an input
parameter. Assuming an ice thickness of about 1600 m for Talos Dome, one gets thin-
ning factors of 0.90 (153 m), 0.78 (353 m), and 0.68 (505 m). Our estimations show
an excellent agreement in the relative trend but with an absolute offset of about 0.1.
One possible reason might be the oversimplification of the Nye-approach. It takes
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Fig. 9 Comparison of the directional summary statistics for the ice samples from depths 353 m and 505 m.
Means of the functions Gloc, Gglob, and Kdir (from top to bottom) evaluated for the x-, y-, and z-directions
(from left to right)

neither the bedrock boundary conditions nor the change of mechanical properties of
ice with age and climate into account. The absolute thinning factor is very sensitive
against the bedrock conditions. An assumed freezing at the bedrock would shift the
absolute values in the upper part of the ice sheet towards higher thinning factors. Sim-
ulations with the so called Dansgaard–Johnsen approach (also described in Paterson
1994) which parameterized the effect of bedrock freezing with a linear decrease of
the thinning rate to zero at bedrock results in absolute thinning factors comparable to
our estimations. However, the parameterization of the linear decrease is arbitrary in
the model, and the real bedrock conditions at the Talos Dome site are not known due
to the incomplete drilling so far. However, the qualitative agreement with the pure
constrained model representations gives us confidence that the dating of ice cores
will benefit from the independent estimations of the thinning function in future.
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