Sea salt sodium record from Talos Dome (East Antarctica) as a potential proxy of the Antarctic past sea ice extent

M. Severi a,*, S. Becagli a, L. Caiazzo a, V. Ciardini b, E. Colizza c, F. Giardi a, K. Mezgec c, C. Scarchilli d, B. Stenni d, E.R. Thomas e, R. Traversi a, R. Udisti a, f

a University of Florence, Chemistry Dept. “Ugo Schiff”, Via della Lastruccia, 3, 50019, Sesto Fiorentino, FI, Italy
b Laboratory for Earth Observations and Analyses, ENEA, Rome, Italy
c Department of Mathematics and Geosciences, University of Trieste, Trieste, Italy
d Department of Environmental Sciences, Informatics and Statistics, “Ca’ Foscari” University of Venice, Italy
e British Antarctic Survey, Cambridge, UK
f ISAC CNR, Via Gobetti 101, 40129, Bologna, Italy

HIGHLIGHTS

- Sea salt sodium at Talos Dome can be used as a reliable proxy of sea ice extent.
- A positive relationship between ssNa⁺ flux and SIE maxima was found.
- SIE of the Ross Sea and Western Pacific was reconstructed over the 20th century.
- SIE variability increased starting from 1990s.

ABSTRACT

Antarctic sea ice has shown an increasing trend in recent decades, but with strong regional differences from one sector to another of the Southern Ocean. The Ross Sea and the Indian sectors have seen an increase in sea ice during the satellite era (1979 onwards). Here we present a record of ssNa⁺ flux in the Talos Dome region during a 25-year period spanning from 1979 to 2003, showing that this marker could be used as a potential proxy for reconstructing the sea ice extent in the Ross Sea and Western Pacific Ocean at least for recent decades. After finding a positive relationship between the maxima in sea ice extent for a 25-year period, we used this relationship in the TALDICE record in order to reconstruct the sea ice conditions over the 20th century. Our tentative reconstruction highlighted a decline in the sea ice extent (SIE) starting in the 1950s and pointed out a higher variability of SIE starting from the 1960s and that the largest sea ice extents of the last century occurred during the 1990s.

© 2017 Elsevier Ltd. All rights reserved.

* Corresponding author.
E-mail address: mirko.severi@uni.fi (M. Severi).

http://dx.doi.org/10.1016/j.chemosphere.2017.03.025
0045-6535 © 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Sea-ice represents a powerful phenomenon exerting a strong influence on the oceanic, biological and climatic systems and, given its importance, it is a focus in environmental research. The expansion and retreat of Antarctic sea-ice is one of the most striking seasonal changes affecting the Earth today, effectively increasing by two fold the surface area of Antarctica (Allen et al., 2011). Sea-ice plays a key role in the production and upkeep of deep waters in the ocean and therefore in the whole global ocean circulation system (Dieckmann and Hellier, 2010). Moreover, sea-ice greatly affects the transfer of energy at the ocean-atmosphere interface as it shows a much higher albedo with respect to open water (Brandt et al., 2005) and is thus able to reflect more incoming radiation deeply changing the radiative balance. The presence of sea-ice also represents a physical barrier that successfully inhibits the transfer of heat, moisture and trace gases (such as CO$_2$) between the ocean and the atmosphere (Bopp et al., 2003). Additionally, sea-ice has a direct influence on the Antarctic biota and it has been suggested that it is linked to the “biological pump” and thus to the global carbon cycle (Sarmiento and Gruber, 2006).

For all these reasons, despite an unknown exact mechanism, sea-ice plays a critical role in the scientific description of climate change (Sereze and Barry, 2011) and, therefore, it is important to predict changes in sea ice under the future conditions of an ongoing climate change. A better understanding of the links between sea-ice and climate and a real improvement of the models requires a large series of long observational datasets. Unfortunately, satellite observations only began in the 1970s and before that we rely on sporadic observations and proxy data (Abram et al., 2013).

The reconstructions of Antarctic sea-ice cover used as data for the parameterization of models have been so far mainly based on diatom remains found in marine sediment cores (Armand et al., 2005, 2008). These diatom based reconstructions can provide quantitative estimates of yearly sea-ice presence and/or duration and can allow us to draw limits for winter and summer sea-ice extents (Esper and Gersonde, 2014). Particularly large datasets have been made available based on the occurrence of sea-ice related diatoms (Gersonde et al., 2005) and, in the last years, new methods based on a sea-ice biomarker known as IP$_{25}$ have been developed (Belt et al., 2007; Belt and Müller, 2013) in order to reconstruct the Arctic sea-ice cover in the past. In more recent years, the analysis of an organic geochemical lipid biomarker, called IPSO$_{25}$, has been proposed as a possible proxy measure of Antarctic sea ice (Massé et al., 2011; Collins et al., 2013).

Ice cores drilled in the Antarctic ice-sheet represent a very different kind of proxy record with respect to ocean sediment cores. The information about sea-ice is present in the ice cores only if it is transported from the surface of the ocean to the atmosphere. The information about sea ice is transported from the surface of the ocean to the atmosphere and unlike the sediment records is representative of sea ice in a particular sector, rather a single site. One of the greatest advantages of using ice cores to reconstruct sea-ice variations is their higher temporal resolution with respect to marine sediment cores. Reconstruction of sea-ice from ice-core proxies have so far been based on concentrations or fluxes of sodium, methanesulphonic acid (MSA, CH$_3$SO$_3$H) and, more recently, halogen species. Sea salt sodium (ssNa$^+$) has been used to quantify sea-ice variations (Wolff et al., 2006) based on the formation of high salinity “frost flowers”, and more recently (Rankin et al., 2009) on sea ice surfaces. However, a recent laboratory experiment (Roscoe et al., 2011) shows that frost flowers are very stable also in the presence of wind and no significant aerosol emission was observed. For this reason, such source of ssNa$^+$ is difficult to distinguish from other dominating sources, such as sea spray aerosol, which has been proved to be dominant at many drilling sites, e.g. James Ross Island (Abram et al., 2011) and Law Dome (Curran et al., 1998). Yang et al. (2008) proposed more recently that a massive source of Na$^+$ in several Antarctic drilling sites could be represented by “blowing snow”, i.e. the snow-lying on sea ice, rich in salts, that can be easily lifted into the air through blowing-snow events. Levine et al. (2014) found in their model experiment that, on an interannual scale, meteorology, and not sea ice extent, is the dominant control on the atmospheric concentration of sea salt. Which is the real factor controlling the sea salt content in Antarctic sites is so far still an open and debated question.

Methanesulphonic acid (MSA) was first used quantitatively for a reconstruction of sea ice extent (SIE hereafter) by Curran et al. (2003) in an ice-core drilled at Law Dome. Afterwards this marker has been largely investigated as a sea-ice proxy in several drilling sites (Abram et al., 2010; Becagli et al., 2009, 2016; Foster et al., 2008; Criscitiello et al., 2013) highlighting both positive and negative relationship between MSA and sea ice. However, this compound is not always fully stable in snow and ice and can be easily remobilised in the ice matrix after deposition (Smith et al., 2004) limiting its utility for long-term sea ice reconstructions at certain sites.

Recently, two halogens, namely iodine and bromine, has been suggested as ice core proxies useful to reconstruct the past sea ice concentration at Talos Dome (Spolaor et al., 2013) and at Law Dome (Vallelonga et al., 2016); furthermore the Canadian Arctic sea ice was successfully reconstructed for the last 120.000 years from the NEEM ice core (Greenland) using the bromine content as a proxy (Spolaor et al., 2016).

In this paper we assess the suitability of ss-Na$^+$ at Talos Dome (TD here hence) as a proxy for past sea ice conditions. The reliability of the sea salt sodium record from Talos Dome site in serving as a potential proxy of SIE is supported by the comparison between the ssNa$^+$ stratigraphic profile and the calculation of sea ice extent achieved by satellite data in the 1979–2003 time period. Severi et al. (2009) showed already the relationship between Na$^+$ and SOI (Southern Oscillation Index) and the good agreement between nssSO$_4^{2-}$ and MSA with the anomalies in SIE for the 1975–1995 period suggesting the potential of this site in recording variations in sea ice and sea ice-related parameters. The results obtained from the analysis of a 5.65 m snowpit give further support for the use of ssNa$^+$ as qualitative sea-ice tracer at the TALDICE drilling site, where sea-spray deposition and fractionation effects have been deeply investigated in the past (Becagli et al., 2004; Traversi et al., 2004).

2. Materials and methods

2.1. Sampling site

Talos Dome is a coastal dome (Fig. 1) in Northern Victoria Land on the edge of the East Antarctic plateau and is located about 290 km from the Southern Ocean (Dates Land—George V Land), 250 km from the Ross Sea, and 275 km from the Italian “Mario Zucchelli” Station (Terra Nova Bay). The site chosen for digging a snow-pit (159° 10′ 30.9″ E, 72° 49′ 04.6″ S, 2330 m a.s.l.) was close to the centre of the dome and also to the TALDICE deep drilling site (Stenni et al., 2011; Severi et al., 2012).

During the 2003/2004 Antarctic campaign a snow pit was dug by hand to a depth of 565 cm and more than 200 samples were continuously collected along a vertical line using pre-cleaned PET vials with a mean resolution of 2.5 cm, wearing sterile overalls and gloves. All the samples were then stored in sealed polyethylene bags and kept frozen in insulated boxes for the transport to Italy.
2.2. Analysis method

The samples were melted in a clean room under a class-100 laminar flow hood shortly before chemical analysis. The method used for the analysis of the ionic content of the samples was based on a fully automated ion chromatographic system described in details elsewhere (Caiazzo et al., 2016; Morganti et al., 2007; Severi et al., 2009).

Na⁺ content in Antarctic aerosol, and thus snow and ice, is always dominated by sea salt, especially in interglacial periods, showing a minor contribution of dust leachable Na⁺. As an example, the non-sea salt contribution to Na⁺ total budget at Dome C during the Holocene was estimated to be around 2% (Rothlisberger et al., 2002) and therefore Na⁺ direct measurement could be reasonably taken as a marker of sea salt. Nonetheless, the “pure” sea salt contribution can be more reliably assessed if the mineral dust contribution to Na⁺ content is cut off. Therefore, we corrected the total Na⁺ content using non sea-salt Ca²⁺ (nssCa²⁺) as a crustal marker and a simple two-variable, two-equation system allowing the evaluation of the ss- and nss-fractions of both Na⁺ and Ca²⁺:

\[\text{ssNa}^+ = \text{totNa}^+ - \text{nssCa}^2+ / \text{R}_{\text{crust}} \]

\[\text{nssCa}^2+ = \text{Ca}^2+ - \text{R}_{\text{sea water}} \times \text{ssNa}^+ \]

\[(\text{Ca}^2+ / \text{Na}^+ = 0.038 = \text{R}_{\text{sea water}}) / (\text{Ca}^2+ / \text{Na}^+ = 1.78 = \text{R}_{\text{crust}}) \]

where \(R_{\text{crust}} \) and \(R_{\text{sea water}} \) are the mean ratio (w/w) in the Earth crust and in bulk seawater, respectively (Bowen, 1979). For the TD site, on average only 5% of the total Na⁺ does not come from sea spray.

The snow pit was dated by annual layer counting, using a multi-parametric approach as described in Severi et al. (2009). Using this kind of dating in our record, we cannot exclude misinterpretation in the annual layers counting or missing years in the snow layers due to wind ablation of the snow layers and low accumulation (Frezzotti et al., 2007). In order to minimize these type of errors we smoothed our annual data with a 3-year running average, indeed we have to take into account a possible dating error of 2/3 years.

In order to account for the dilution of the original atmospheric aerosol concentrations in the snow pit samples by snow accumulation, the measured concentrations had to be corrected for this effect. This was achieved by multiplying the measured concentrations by the accumulation rate at the respective depth or age, resulting in the total deposition flux of the aerosol (Wolff et al., 2006). The accumulation rate along the snow pit was calculated according to the age scale of Severi et al. (2009) and to the density profile of the snow pit achieved using the method described in Severi et al. (2009). Following this methodology the annual ssNa⁺ flux was calculated by multiplying the mean annual concentration values by the annual accumulation rates at the TD site.

A high resolution ssNa⁺ flux time series for TD site, spanning the last century (2003–1920 DC), was built by overlapping the TALDICE ice core Na⁺ record and the snowpit data. The TALDICE deep ice core started at a depth of 5.0 m and we used our high resolution (2.5 cm) snow pit data to fill the missing top part of the core. The TALDICE Na⁺ flux (at 4 cm resolution) was calculated using the past accumulation rates modelled in the AIICC2012 age scale (Bazin et al., 2013; Veres et al., 2013) at 1 m resolution.

2.3. Sea ice extent (SIE) data

Time series of the monthly mean sea ice extent for each region of the Southern Ocean (Weddell Sea, Indian Ocean, Western-Pacific Ocean, Ross Sea and Bellinghausen and Amundsen Seas) spanning from November 1979 to December 2003, were calculated from observations of sea ice concentrations from passive microwave satellite radiometers (Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data) (Parkinson and Cavalieri, 2012).

Sea ice concentration is published at a regular 25 km resolution daily. The ice extent is calculated by summing the areas of the pixels within each region with ice concentrations of at least 15% and then averaged on a monthly basis.

2.4. Back-trajectories (TJ) air masses

Three-day back trajectories were computed daily, arriving at 1000 m and 3000 m over TD at 12UTC. The backward trajectories were generated using the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model developed by NOAA and Australia’s Bureau of Meteorology (Draxler and Rolph, 2012), for the period spanning from 1979 to 2003, covering completely the snowpit time range. HYSPLIT is initialised with the European Centre for Medium Range Weather Forecast (ECMWF) ERA Interim Reanalysis meteorological data fields (Simmons et al., 2006) with a regular grid of 1° × 1°. Errors in TJ calculations after 3 days are estimated in the range 10–20% of the travel distance (Schlosser et al., 2008, Scarchilli et al. 2011). The TJs were projected onto the Sea Ice Cover (SIC) field, and the nearest model value was associated with hourly SIC value along the trajectory path, assuming a constant ice cover condition during the day.

2.5. Climatic indexes

Our analysis takes into account the Inter-decadal Pacific Oscillation (IPO) and the Antarctic Oscillation (AAO), in order to better understand the possible linkage between SIE and ssNa⁺ flux at TD. IPO is a naturally fluctuating atmospheric pressure which is responsible of warming or cooling of sea surface temperature (SST) over the entire Pacific Basin. Each IPO cycle can last from 20 to 30 years (Salinger et al., 2001). Since the latest 1990s the IPO index has
been in a “negative phase”, causing a decrease of SST and, as a consequence, sea ice to rapidly increase. In our analysis we used the dataset available online at https://data.mfe.govt.nz/x/ReypdH.

The circulation variability of the lower atmosphere in the Southern Hemisphere is triggered by the annular mode in the pressure field anomaly at various temporal scale, from seasonal to inter-annual (Thompson and Wallace, 2000). This mode has been referred to as the Antarctic Oscillation (AAO), or the Southern Annular Mode (SAM) and it is significantly related to the strength of the westerlies and storm track around Antarctica (Baldwin, 2001); we used the dataset described in Marshall (2003) in order to discuss the relationship between SIE and ssNa$^+$ flux data.

3. Results

Fig. 2 shows the maximum values of SIE for two selected sectors of the Southern Ocean (Ross Sea and Western Pacific Ocean) and for the total Antarctic continent in the time period spanning from 1979 to 2003. On average, over this 25-year period, maximum SIE occurs in September for all sectors; hence, we refer in our work to the SIE maxima as the September monthly average in each year. For the total Antarctic sea ice, the SIE maxima range from a minimum of 17.7 \times 106 km2 in 1986 to a maximum of 18.9 \times 106 km2 in 1998. We applied a linear regression to the September monthly average values for the Antarctic total SIE and for the two selected sectors of the Southern Ocean (see bold lines in Fig. 2). The trend of the September Antarctic SIE shows a positive slope in agreement with previous results (Parkinson and Cavalieri, 2012) confirming that in the studied period there is a general trend to the increase of the SIE for the Southern hemisphere. The SIE maxima of the Western Pacific Ocean (90°E – 160°E) shows a slightly decreasing trend whereas the Ross Sea sector (160°E – 130°W) shows a positive trend of the September SIE trend. In summary we can assess that, while there is a general increase of SIE at continental scale in Antarctica mostly driven by the Ross Sea sector, the variations of the SIE around the continent are different from one sector to another of the Southern Ocean, showing both positive and negative trends (Parkinson and Cavalieri, 2012; Jones et al., 2016).

The top panel of Fig. 2 shows the ssNa$^+$ flux measured in the Talos Dome snow pit. A simple 3-years running average is superimposed in order to minimize dating errors due to low accumulation and post depositional phenomena. A general agreement with the maximum SIE of the whole continent is evident; for example there is an increase both in the ssNa$^+$ flux and in the SIE starting from the beginning of the 1990s. The comparison with the SIE of each sector of the Southern Ocean shows less evident common features even if some similarities between ssNa$^+$ flux and maximum SIE appear for the Ross Sea sector.

The spatial correlation between smoothed ssNa$^+$ flux and Sea Ice Cover (SIC) and ECMWF era Interim Geopotential Height at 500 hPa (GP), during March–November (MAMJJASON) are highlighted in Fig. 3. Both SIC and GP fields are smoothed with a 3-year running average in order to be consistent with smoothed ssNa$^+$ flux time series. The comparison with SIC shows relative high correlation (Fig. 3a) in the Ross Sea, in the Western Pacific Sector and along

Fig. 2. Maximum September Sea Ice Extent (calculated as monthly average) from 1979 to 2003 as reconstructed from satellite measurement for the Western Pacific Ocean (green) and the Ross Sea (red) sectors of the Southern Ocean. The total Antarctic SIE is shown as a black line and it is calculated as the sum of the five sectors shown in Fig. 1. For each sector the trend of the September SIE over the 25-year period is also shown as a solid line. The top panel shows the profile of the ssNa$^+$ flux at Talos Dome as yearly mean values (light grey line) and as three-year running mean (blue line). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Wilkes Land at the boundaries of the sea ice edge where sea ice variability is greatest. On the other hand strong anti-correlation appears in the Bellingshausen sea, along the Antarctic Peninsula coasts and in the Weddell sea.

The correlation with the GP shows a large negative feature spread over East Antarctica and extending to southern oceans and Ross Sea with a large minimum above Oates and Wilkes lands. These correlations are enhanced during winter period (JJA, Fig. 3c) where most of SIC over Ross Sea and Western Pacific seems positively correlated to Na\(^+\) flux with maxima along the sea ice edge. Particularly interesting is the JJA spatial correlation with GP which is no more elongated over all the East Plateau but it is now concentrated over the Ross Sea sector with a centre of action above the maximum correlation between Na\(^+\) flux and SIC. These features are probably connected to the increasing (decreasing) of storm track passage over Southern Ocean between 150\(^\circ\)E and 150\(^\circ\)W and consequently decreasing (increasing) in pressure and geopotential fields and enhance (suppress) of ssNa\(^+\) advection to Talos Dome site.

In order to understand possible ssNa\(^+\) path from source regions toward the TD site, we selected TJ which show along their path at least three points where interpolated SIC and wind speed are greater than 0.50 and 5 m/s, respectively, and the altitudes are comprised between 50 and 500 m above the ground. The TJ analysis in Fig. 4 suggests that the provenance of air masses, possibly related to ssNa\(^+\) transport to TD, are mainly from the Western Pacific and Ross Sea sectors (130\(^\circ\)W-130E\(^\circ\)). TJ ending at 1000 m above TD generally encounter favorable conditions for loading Na\(^+\) close to the Antarctic coasts of Oates, Victoria and Marie Byrd Lands and Ross Sea. On the other hand TJs ending at 3000 m above TD generally meet loading conditions off-shore, with loads prevalently over Southern Ocean between 70\(^\circ\) and 65\(^\circ\)S close to the sea ice edge. The selected TJs are mainly distributed over winter months and partly during the end of autumn and beginning of spring. Sala et al. (2008), using a similar analysis but with slightly different conditions, highlighted the same loading areas with preferences of the Ross Sea sector during fall and spring and from the Southern and Indian Ocean sectors during winter.

Spatial correlation and TJs analysis point out that formation and variability of the sea ice over the entire Ross Sea and Western Pacific Ocean sectors, especially during winter months, could be connected to ssNa\(^+\) flux as measured at TD site. For this reason we selected the whole Ross Sea and Western Pacific sectors as the most probable source areas of ssNa\(^+\) and we investigated the role of ssNa\(^+\) at Talos Dome as a sea ice proxy.

Fig. 5a shows the September SIE maxima from 1979 to 2003 as the sum of the Ross Sea and the Western Pacific Ocean sectors September SIE maxima (dark red line) and the ssNa\(^+\) annual mean.
According to Eq. (1) we used our yearly-averaged ssNa\(^+\) fluxes in order to calculate a modelled SIE maximum for each year in the time range between 1979 and 2003. The profile of this modelled Sea Ice Extent is shown as a blue dashed line in Fig. 5a. We observe a general agreement between the modelled and satellite-derived Sea Ice Extent, even if our simple linear model is not able to depict short-term variations (e.g. the 1990 or 1996 SIE peaks are completely missing).

Moreover, we can assess that for log (ssNa\(^+\) flux) values similar to the present ones, we can reliably derive SIE maxima also in the past as already done at Talos Dome as a qualitative reconstruction by Buiro et al. (2012) for a time period spanning between 20,000 and 50,000 years BP (before 1950 AD). We have to keep in mind that the SIE calibration shown in this paper might not continue in a linear way beyond the range shown here.

The top panel of Fig. 5a shows the trends of the IPO and SAM indexes in the studied period, highlighting a general agreement among these two indexes and our reconstructed SIE. Using the 3-year averaged data for the IPO and SAM indexes (dashed lines in the top panel of Fig. 5a) and calculating the Pearson’s correlation coefficient we found that \(r = -0.44 \) (\(p < 0.0001 \)) and 0.61 (\(p < 0.0001 \)) respectively. Meel et al. (2016) showed how Antarctic sea ice expansion since 2000s has been driven by Pacific decadal climate variability. Moreover several studies put in evidence the direct effect of IPO over West Antarctica and Antarctic Peninsula temperatures and in atmospheric circulation across the southern Pacific and Atlantic oceans. Conversely the IPO and ssNa\(^+\) flux at TD site have similar trends over inter-annual period but the relative low correlation seems to suggest no other direct relationship.

On the other hand the teleconnection between SAM and ssNa\(^+\) flux seems to be more pronounced. The Annular mode has been shifted towards more positive state since 1950s with a deepening of the Amundsen Sea Low near Antarctica which caused a more cyclone in the circumpolar through (Sinclair et al., 1997). This is consistent with the large spatial anti-correlation between GP and Na\(^+\) flux shown in Fig. 3c. The coupling of favorable atmosphere dynamics and increase of surface where wind stress is able to blow up and transport toward coast sea salt could be the possible link between sea ice and Na\(^+\) flux at TD site.

Fig. 6 shows the reconstruction of the September maximum SIE of the Ross Sea and Western Pacific Ocean sectors achieved by using our TALDICE dataset and the modelled SIE from the Ferrigno ice core (74°34′S, 86°54′W; Thomas and Abram, 2016) using MSA as a marker. The SIE reconstruction by Curran et al. (2003) from the Law Dome ice core (66°48′S, 112°48′E) and the Whitehall Glacier (72°54′S, 169°5′E; Sinclair et al., 2014) deuterium excess based SIE reconstructions are shown in Fig. 6 as well.

In order to compare our SIE reconstruction with the previously published works, we have to keep in mind that the three available ice core records used to reconstruct the past sea ice conditions, are influenced by different sectors of the Southern Ocean. The Law Dome reconstruction refers to the 80°E – 140°E sector, covering the Western Pacific Ocean and a small part of the Indian sector, whereas at Ferrigno site MSA was found to depict the SIE across the Amundsen Ross sea, centred on 146°W. The WHG record, based on d-excess and MSA, depicts the Ross sea ice conditions, overlapping the major part of our reconstructed area and for this reason represents the most interesting site to compare with TD.

The smoothed profile of the SIE at TD in Fig. 6 (solid black line) shows rather stable winter sea ice maxima over the
1920–1960 period. Since the 1960s the SIE anomalies of our reconstruction with respect to the whole period (Fig. 6 - bottom panel) suggest an increased decadal-scale variability in the recent decades with respect to the beginning of the century as already found by Thomas and Abram (2016) in the Amundsen-Ross sea sector. Furthermore, the reconstructed profile of the SIE in the Ross Sea and Western Pacific Ocean sectors highlights that SIE during the late 1990s was the greatest of the whole century, as observed in reconstructions by Thomas and Abram (2016) and Sinclair et al. (2014); during the late 1990s we can in fact observe the highest positive SIE anomalies over the last century (see bottom panel of Fig. 6).

The Law Dome record shows a continuous decline in the SIE starting from the 1950s and lasting to the end of the record; the onset of this decreasing trend in SIE is also visible in the Ross Sea sector as recorded in the TD and WHG reconstruction whereas it is not observed in the Ferrigno record. Despite the almost coeval beginning of this decreasing trend for TD, Law Dome and WHG reconstructions, we can observe an inversion in the SIE decline in the TD and WHG records starting from the late 1990s, when we have previously noticed the beginning of a negative phase of the IPO, whereas this inversion of trend is not visible in the Law Dome record.

4. Conclusions

We showed in this work that ssNa\(^{+}\) flux in the Talos Dome region during a 25-year period spanning from 1979 to 2003 is consistent with the idea of using it as a proxy for reconstructing the Sea Ice Extension in the Ross Sea and Western Pacific Ocean, at least for recent decades. We found a statistically significant positive linear relationship between the log (ssNa\(^{+}\) flux) and the SIE calculated by satellite data and through this relationship we were able to reconstruct the SIE profile directly from our ssNa\(^{+}\) data for a 25-year long period. Therefore, we used this positive relationship, along with an assumption that the relationship is stationary, to reconstruct past SIE fluctuation for the 20th century, pointing out a higher variability of SIE from the 1960s. Moreover, we found that the last two decades show the highest SIE during the last century as already observed by other records. Using our approach, ssNa\(^{+}\) could prove to be a proxy for SIE in this area, allowing to achieve a very high temporal resolution history of its past fluctuations for the last thousands years. Although our findings strongly support a relationship between ssNa\(^{+}\) and SIE, it is also clear that meteorological conditions responsible for uplift and transport of sea-salt aerosol from the sea ice surface to the ice sheet have a strong influence on the ssNa\(^{+}\) flux. Current and future efforts in sea salt aerosol
modeling will improve the understanding of the information hidden in the ssNa ice core records.

Acknowledgements

This research was financially supported by the MIUR-PNR4 program through a co-operation agreement among the PNR4 consortium, University of Milano-Bicocca and University of Venice in the framework of the “Glaciology” and “Chemistry of Polar Environments” projects. This work is also a contribution to the ESF HOLOCIP project. The HOLOCIP Project, a joint research project of the European Science Foundation PolarCLIMATE programme, is funded by national contributions from Italy, France, Germany, Spain, Netherlands, Belgium and the United Kingdom. We thank the logistic and drilling TALDICE team. The Talos Dome Ice Core Project (TALDICE), a joint European programme led by Italy, France, Germany, Switzerland and the United Kingdom. This is HOLOCIP publication n° 29 and TALDICE publication n° 46.

References

Draxler, R.R., Golph, G.D., 2012. HYSPLIT (Hybrid Single-Particle Lagrangian Inte

